UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍA INGENIERÍA DE MANUFACTURA

Programa académico	Ingeniería de Manufactura
Asignatura	TECNOLOGÍAS AVANZADAS DE SUJECIÓN Y ENSAMBLE
Código	IMFH62
Área	Procesos CAD/CAE
Año de actualización	II semestre de 2021
Semestre	8
Tipo de asignatura	Teórico-práctica
Número de créditos	2
Total, horas	2 h teóricas, 1 h prácticas
Profesores	
Director	Ricardo Acosta Acosta

1. Breve descripción

Los procesos de fabricación y ensamble requieren de una amplia utilización de sistemas de sujeción y ensamble de las piezas de trabajo, y en múltiples casos dichos sistemas son subvalorados en cuanto a sus funciones e importancia. El no diseñar, seleccionar, instalar o utilizar adecuadamente un sistema de sujeción conlleva a pérdidas de productividad, problemas de calidad, daños de componentes, fallas catastróficas y afectación a la seguridad del personal.

El presente curso forma al futuro Ingeniero de manufactura para aplicar el diseño, selección y utilización, de los métodos avanzados de sujeción y ensamble, en operaciones de fabricación de diferentes volúmenes de producción, tanto durante las etapas de fabricación como en las etapas finales de ensamble, inspección y operación.

2. Objetivos

Objetivo del programa:

- · Formar al estudiante en el diseño para la fabricación, selección, mantenimiento y montaje de máquinas y elementos de máquinas con énfasis en máquinas-herramienta.
- · Formar al estudiante en el modelado, simulación y validación de los diseños de productos y procesos, teniendo en cuenta la fabricación bajo enfoques PLM.

Objetivo de la asignatura:

- · Comprender y establecer los requerimientos del diseño para la fabricación de la pieza de trabajo
- · Evaluar distintas alternativas de montaje y sujeción durante las etapas de fabricación, ensamble e inspección de piezas de trabajo, con el fin de reducir la posterior ocurrencia de fallos en el proceso y problemas de calidad
- · Efectuar las evaluaciones económicas de los costos de obtención de sistemas de sujeción y ensamble, y su afectación en el costo de fabricación de la pieza de trabajo

3. Resultados de aprendizaje

Resultado de aprendizaje del programa:

Página 1 de 4

- · Seleccionar, integrar y/o diseñar los procesos de manufactura adecuados para un propósito en particular, teniendo en cuenta los recursos actuales y/o definiendo los nuevos recursos a Adquirir
- · Modelar y simular procesos de manufactura, máquinas y equipos aplicando conocimientos mecánica de sólidos, termodinámica, transferencia de calor y mecánica de fluidos para satisfacer las necesidades de la industria

Resultados de Aprendizaje de la asignatura

- · Seleccionar, diseñar e integrar el sistema de sujeción adecuado, para atender una determinada necesidad, con base en planteamientos técnico-económicos
- · Utilizar paquetes computacionales CAE para asistir el diseño de un sistema de sujeción, para generar la animación gráfica o render
- · Proponer mejoras para un sistema de sujeción existente, costear su fabricación y estimar las reducciones de costos de proceso productivo con su implementación

4. Contenido

Capítulo I. INTRODUCCIÓN. Conceptualización sobre bases o referencias constructivas, tecnológicas y de explotación ^[1,2](3 h).

Capítulo II. PANORAMA DE LOS MÉTODOS AVANZADOS DE SUJECIÓN Y ENSAMBLE DURANTE LOS PROCESOS DE FABRICACIÓN, ENSAMBLE E INSPECCIÓN [1,2,5] (3 h).

Pinzas o *grippers*. Sujetadores o *fixtures*. Plantillas o JIG. Sujeción con potencia fluida. Sujeción con medios magnéticos. Campos generales de aplicación. Ventajas y desventajas generales. Importancia técnica y económica de la elección y utilización de los métodos adecuados de sujeción.

Capítulo III. PINZAS O GRIPPERS [1,3] (6 h)

Campo de aplicación. Materiales. Ventajas y desventajas. Análisis cinetoestáticos y dinámicos. Mantenimiento del sistema. Costeo básico de un sistema de sujeción con pinzas o *grippers*.

Capítulo IV. SUJETADORES O FIXTURES [1,3](6 h)

Tipos. Materiales. Campo de aplicación. Ventajas y desventajas. Análisis cinetoestáticos y dinámicos. Mantenimiento del sistema. Costeo básico de un sistema de sujeción con accesorios o *fixtures*.

Capítulo V. PLANTILLAS O JIG'S [1,3] (9 h)

Plantillas para pre-ensamble. Plantillas para control de calidad. Materiales. Campo de aplicación. Ventajas y desventajas. Análisis cinetoestáticos y dinámicos. Mantenimiento del sistema. Costeo básico de un sistema de sujeción con pinzas o *grippers*.

Capítulo VI. SUJECIÓN CON POTENCIA FLUIDA [1,3] (9 h)

Sujeción neumática a presión y por vacío. Sujeción con medios hidráulicos. Diagramas espacio-fase con señales. Campo de aplicación. Ventajas y desventajas. Análisis cinetoestáticos y dinámicos. Mantenimiento del sistema. Costeo básico de un sistema de sujeción con potencia fluida.

Capítulo VII. SUJECIÓN CON MEDIOS MAGNÉTICOS [1,3](2 h)

Principio operativo. Tipos. Materiales. Campo de aplicación. Ventajas y desventajas. Criterios de selección. Mantenimiento del sistema. Costeo básico de un sistema de sujeción con medios magnéticos.

Página 2 de 4

Capítulo VIII. DISEÑO BÁSICO DE SISTEMAS DE SUJECIÓN ^[1,3] (6 h) Principios constructivos para el diseño de sistemas de sujeción. Utilización de sistemas CAE en el diseño de sistemas de sujeción.

PRÁCTICA 1. Definición de bases o referencias constructivas y tecnológicas para una pieza tipo **PRÁCTICA 2.** Costeo del valor de fabricación de un lote de una pieza tipo, dados unos valores de

sistema de sujeción

PRÁCTICA 3. Análisis funcional, cinetoestático y dinámico de un *gripper*

PRÁCTICA 4. Análisis funcional, cinetoestático y dinámico de un JIG

PRÁCTICA 5. Análisis funcional, cinetoestático y dinámico de un sistema de sujeción de un sistema de sujeción con potencia fluida

PRÁCTICA 6. Análisis funcional y de capacidad de trabajo del sistema de magnético de sujeción de la rectificadora tangencial de la UTP

PRÁCTICA 7. Análisis de productividad al utilizar el sistema de sujeción adecuado, versus utilizar otro inadecuado

PRÁCTICA 8. Estudio de catálogos comerciales de sistemas de sujeción con *grippers*, *fixtures*, medios magnéticos, etc.

PRÁCTICA 9. Definición de requerimientos de diseño para el sistema de sujeción de una pieza tipo A **PRÁCTICA 10.** Análisis de alternativas de diseño para el sistema de sujeción de la pieza tipo A **PRÁCTICA 11.** Utilización de sistema CAE para diseñar el sistema de sujeción elegido para la pieza tipo A

PRÁCTICA 12. Visita técnica

5. Requisitos

Métodos básicos de sujeción y ensamble IMFF33 Potencia fluida y sus sistemas de control IMFH13

6. Recursos

Aulas de clase, Laboratorio de Resistencia de Materiales, Taller de Máquinas y Herramientas, salas de computadores, Programas computacionales, biblioteca, Internet, recursos audiovisuales.

Bibliografía:

- 1. Groover, P. Mikell. Fundamentals of modern manufacturing. Materials, processes and systems. Fourth edition. John Wiley & Sons Inc.
- 2. Jig and Fixture Handbook, third Edition, Carr Lane, Manufacturing CO.
- 3. Manufactura, ingeniería y tecnología, Quinta Edición, S. Kalpakjian S.R. Schmid. 4. *Altintas, Yusuf*. Manufacturing automation. Metal cutting mechanics, machine and tool vibrations, and CNC design.
- 5. Grote, Antonsson (Eds.). Handbook of Mechanical Engineering. Ed. Springer

Webgrafía

https://www.amf.de/es/productos/tecnologia-de-sujecion/sistemas-de-sujecion-magnetica.html

7. Herramientas técnicas de soporte para la enseñanza

- 1. Clases magistrales.
- 2. Utilización de ejercicio tipo de cada tema.
- 3. Estudio de casos aplicados.
- 4. Ensayos de laboratorio.
- 5. Lecturas de libros, artículos y reflexiones personales.
- 6. Tutoriales.
- 7. Vídeos (Youtube)

Página 3 de 4

8. Trabajos en laboratorio y proyectos

Prácticas de laboratorio relacionados con los temas expuestos en el contenido.

9. Métodos de aprendizaje

Aprendizaje estructurado basado en el "Aula invertida (flipped learning)"

Se usará la metodología basada en los resultados realizando una verificación de los logros alcanzados en cada capítulo y del proceso total.

Se hará énfasis no sólo en la aplicación de la teoría y las ecuaciones, sino también en el entendimiento de los conceptos.

10. Evaluación

Dos exámenes parciales; informes de talleres realizados, trabajo de curso que se realizará a lo largo del semestre y que el profesor irá evaluando semana a semana y asignando progresiva y acumuladamente calificación (el curso se fundamentará en la realización de un trabajo de curso)

Página 4 de 4